

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583 **QUESTION BANK (DESCRIPTIVE)**

Subject with Code: Switching Theory and Logic Design

Course & Branch: B.Tech & ECE

(20EC0403)

Year & Sem: II B.Tech & I Sem **Regulation:** R20

UNIT-I BOOLEAN ALGEBRA AND LOGIC GATES

1.	a) Define Boolean Algebra and list the postulates used in it.	[L1][CO1]	[6M]
	b) State and prove any four Boolean theorems of Boolean algebra.	[L3][CO1]	[6M]
2.	State and prove the following Boolean laws: i) Commutative ii) Associative iii) Distributive	[L3][CO1]	[12M]
	a) Prove De Morgan's theorems using Perfect Induction Method.	[L3][CO1]	[6M]
3.	b) Simplify the given Boolean expression to a sum of 3 terms. A'C'D' +AC' +BCD + A'CD' + A'BC + AB'C'	[L4][CO2]	[6M]
4.	Simplify the following Boolean expressions: i) (X'+Z')(X+Y'+Z') ii) (X'Y'+Z)'+Z+XY+WZ iii) A'B(D'+C'D)+B(A+A'CD) iv) (A'+C)(A'+C')(A+B+C'D)	[L4][CO2]	[12M]
_	a)Simplify the following Boolean functions to minimum number of literals: i) $F_1 = (a + b)'(a' + b')'$ ii) $F_2 = y(wz' + wz) + xy$	[L4][CO2]	[6M]
5.	b) State and prove Consensus Theorem and Absorption Theorem of Boolean algebra.	[L3][CO1]	[6M]
6.	Identify the Dual of the following Boolean expressions. (i) AB'C+AB'D+A'B' (ii) A'B'C+ABC'+A'B'C'D	[L2][CO1]	[12M]
7.	Find the complement of the following Boolean expressions. i) B'C'D + (B + C + D)' + B 'C'D'E ii) AB + (AC)' + (AB + C) iii) A'B'C' + A'BC' + AB'C' + ABC' iv) AB + (AC)' + AB'C	[L3][CO1]	[12M]
8.	a) Express the following functions in Sum of Minterms and Product of Maxterms. i) $F_1(A,B,C,D) = B'D + A'D + BD$ ii) $F_2(x,y,z) = (xy+z)(xz+y)$	[L2][CO1]	[6M]
	b) Express the following Boolean functions into Canonical form. i) F ₁ =AB+BC+CA ii)F ₂ = XY+Z+YZ+XYZ	[L2][CO1]	[6M]
9.	a) Simplify the given Boolean function, F to minimum number of literals using Boolean algebra. F=XY'Z + X'Y'Z + W'XY + WXY		[6M]
	b) Draw the logic diagram for the simplified expression of the above using AOI logic.	[L1][CO2]	[6M]
10	a) List the different Boolean expressions for Two binary Variables.	[L1][CO1]	[6M]
10	b) What are Universal Gates? Give their truth tables and Graphic symbols.	[L1][CO1]	[6M]

UNIT -II **GATE – LEVEL MINIMIZATION**

	a) List the steps involved in simplification of K-Map.	[L1][CO1]	[6M]
1.	b) Simplify the Boolean expression, F=A'+AB+ABD'+AB'D'+C' using Four Variable K-Map and draw the logic diagram using AOI.	[L4][CO2]	[6M]
2.	a) Simplify the Boolean function using Five Variable K-Map. F=∑m(0, 1,2, 4, 7, 8, 12, 14, 15, 16, 17, 18, 20, 24, 28, 30, 31)		[6M]
۷.	Apply the K-Map technique to simplify the given Boolean expression in POS form using K-Map $F(A,B,C,D) = \Sigma(1,2,4,5,9,12,13,14)$	[L4][CO2]	[6M]
3.	a) Analyze the following Boolean function for minimal POS form using K-Map $F(X,Y,Z) = X'YZ + XY'Z' + XYZ + XYZ'$	[L4][CO4]	[6M]
4	b) Deduce the given Boolean function using K-Map. $F(A,B,C,D)=\sum (1,3,7,11,15)+d(0,2,5)$	[L4][CO2]	[6M]
4.	a) Simplify using K-Map and express the reduced expression in SOP and POS form. $F = \Sigma$ m (0, 6, 8, 13, 14) + Σ d (2, 4, 10)	[L4][CO2]	[6M]
_	b) Develop the logic diagram for the following Boolean function using NAND and NOR gates. Y=(AB'+A'B)(C+D').	[L3][CO5]	[6M]
5.	a) Explain the disadvantage of K-Map method of reducing a Boolean function and how to overcome it.	[L2][CO1]	[6M]
6.	Simplify the following expression using K-Map and realize with NAND and NOR gates. $F = \pi M (1, 2, 3, 8, 9, 10, 11, 14)$. $\pi d (7,15)$	[L4][CO2]	[12M]
	a) Explain the structure of Ex-OR gate by K-Map using 4 Variable.	[L2][CO1]	[6M]
7.	b) Explain the Quine-Mc Cluskey method of minimizing the Boolean functions. Also mention its limitation.	[L2][CO1]	[6M]
8.	Simplify the following Boolean function by using Tabulation method. $F = \Sigma (0, 1,2,8,10,11,14,15)$	[L4][CO2]	[12M]
9.	Determine the prime-implicants, essential prime implicants and simplified expression for the following function. $F(w,x,y,z) = \Sigma(1,3,4,5,9,10,11) + \Sigma d(6,8)$	[L4][CO2]	[12M]
10.	Simplify the following Boolean function using Tabulation method, and realize its logic circuit with NAND gates and NOR gates. $Y(A, B, C, D) = \Sigma(1,3,5,8,9,11,15)$	[L4][CO2]	[12M]

UNIT –III COMBINATIONAL LOGIC

1	a) Define Combinational Circuit and Explain the analysis procedure of	[L2][CO1]	[6M]
	a combinational logic circuit using suitable example.		
	b) Explain the procedure of designing a combinational logic circuit	[L2][CO1]	[6M]
	with an example.		
2	a) Define a Full Adder and realize it with use of truth table.	[L3][CO5]	[6M]
	b) Design a Full Subtractor using truth table.	[L3][CO5]	[6M]
3	a) Design a 4 bit parallel adder/ Subtractor using full adders.	[L3][CO5]	[6M]
	b) Design & implement a 4-bit Binary-to-Gray code converter.	[L3][CO4]	[6M]
4	a) Design a 4 bit Binary-to-BCD code converter.	[L3][CO4]	[6M]
	b) Construct a BCD Adder-circuit using 4-bit binary adders.	[L3][CO5]	[6M]
5	Explain Binary Multiplier with an example.	[L2][CO3]	[12M]
6	a) Explain a 2-bit Magnitude comparator and write down its design	[L2][CO3]	[6M]
	procedure.		
	b) Design & implement Full Adder using Decoder.	[L3][CO4]	[6M]
7	a) Define Decoder and explain in detail about a 2 to 4 line binary	[L2][CO5]	[6M]
	decoder.	[L2][CO3]	[OIVI]
	b) Draw the circuit for 3 to 8 decoder and explain.	[L2][CO5]	[6M]
8	a) Illustrate the following Boolean functions using decoder and OR		
	gates.	[] 2][[05]	[6M]
	$F1(A,B,C,D)=\sum (2,4,7,9)$	[L3][CO5]	
	$F2(A,B,C,D) = \sum (10,13,14,15)$		
	b) What is an encoder? Design an octal to binary encoder.	[L3][CO6]	[6M]
9	a) Define Multiplexer. Construct 4:1 multiplexer with logic gates and	FT 015 CO 41	50.5
	truth table.	[L3][CO4]	[6M]
	b) Represent the following Boolean function with an 8:1 multiplexer.	FI 011 CO 43	F 63 47
	F(A,B,C,D) = A'BD'+ACD+B'CD+A'C'D.	[L2][CO4]	[6M]
10	a) What is Demultiplexer? Design an1:8 demultiplexer using two 1:4	[L3][CO4]	[6M]
	demultiplexer.	[L3][CO4]	[01 VI]
	b) Design a 32:1 Mux using two 16:1 MUXs and one 2:1 MUX.	[L3][CO4]	[6M]

UNIT –IV SYNCHRONOUS SEQUENTIAL LOGIC

1.	a) Define a sequential logic circuit and sketch its block diagram.	[L1][CO1]	[4M]
	b) Differentiate between combinational and sequential circuits.	[L2][CO1]	[4M]
	c) Differentiate between synchronous and asynchronous sequential circuits.	[L2][CO1]	[4M]
	a) Define Latch and list different types of Latches.	[L1][CO1]	[4M]
2.	b) Define Flip-Flop. What are the different types of Flip-Flops?	[L1][CO1]	[4M]
2.	c) Explain the working principle of RS Flip-Flop with the help of logic diagram and give its Characteristic Table and Graphic symbol.	[L2][CO3]	[4M]
3.	a) With the help of logic diagram, obtain the characteristic table of D & T Flip-Flops. Also draw their graphic symbols.	[L2][CO3]	[6M]
3.	b) Explain the working principle of JK Flip-Flop in detail. Also give its characteristic equation, Graphic symbol and Excitation equation.	[L2][CO3]	[6M]
4.	a) Derive the characteristic equations for D & T Flip-Flops.	[L3][CO2]	[6M]
4.	b) Convert SR flip flop into JK Flip-Flop. Draw and explain its logic diagram.	[L2][CO4]	[6M]
5.	a) Design T Flip Flop using JK Flip-Flop and explain its logic diagram.	[L3][CO5]	[6M]
٥.	b) Explain the steps involved in analysis of the clocked sequential circuits.	[L2][CO3]	[6M]
6.	a) Derive the excitation tables for SR, D, JK, and T Flip-Flops.	[L3][CO3]	[6M]
0.	b) Define a Shift register and explain its types.	[L2][CO1]	[6M]
7.	Design a 4 bit Decade counter.	[L4][CO6]	[12M]
8.	a) Define a counter and design a 4-bit Ripple counter.	[L1][CO6]	[8M]
о.	b) Explain in brief about a 2-bit synchronous up-counter.	[L2][CO6]	[4M]
9.	What is a synchronous counter? Design a 3-bit synchronous up/down counter.	[L4][CO6]	[12M]
10.	Explain about the following counters in detail.	[L2][CO3]	[12M]
10.	i) Ring counter ii) Johnson counter		

UNIT -V FINITE STATE MACHINES AND PROGRAMMABLE MEMORIES

	a) Define Mealy model and explain it with neat diagram.							[4M]
1.	b) Define M	loore mo	del. Explain	it with neat d	liagram.		[L1][CO1]	[4M]
	c) Distingui	sh betwe	en Mealy &	Moore mach	ines.		[L2][CO1]	[4M]
2.	Explain the following related to sequential circuits with suitable examples: a) State diagram b) State table c) State assignment						[L2][CO1]	[12M]
	Derive the s				following sta			
		PS		ext State		tput		
	-	X=0	X=1	X=0	X=1			
	A		a	b	0	0		[12M]
3.	-	В	С	d	0	0	[L3][CO6]	
	-	С	a	d	0	0	[[]
	F	D	e	f	0	1		
	 -	Е	a	f	0	1		
		F	g	f	0	1		
	D	G	a	f	0	1		
	Determine t				state table giv			[12M]
		PS	X=0	ext State X=1	X=0	tput X=1		
	-	Λ		h	X=0 0	A=1 0		
		A	a		0	1	[L3][CO6]	
1	-	B C	c	g d	0	0		
4.	ŀ	D	a	f	0	1		
	-	E	e c		0	1		
	-	F	a	<u>g</u> b	0	0		
	-	G	E	f	0	1		
		0	L	1	0	1		
	Explain in brief about Programmable Read Only Mamory (PROM) with a							
5.	Explain in brief about Programmable Read Only Memory (PROM) with a suitable example.					[L2][CO2]	[12M]	
						[] 2][CO1]		
6.	a) Compare ROM and RAM.					[L2][CO1]	[6M]	
	b) Classify various types of RAMs.					[L2][CO1]	[6M]	
7.	Illustrate the PLA for the following Boolean function.					[L3][CO5]	[12M]	
	(i) $F_1 = \Sigma m(0,1,3,4)$ (ii) $F_2 = \Sigma m(0,1,2,3,4,5)$.					. 1. 1	L J	
	Illustrate PLA for the following Boolean function.							
8.	$F_1(A,B,C) = \Sigma m(3,5,7)$					[L3][CO5]	[12M]	
	$F_2(A,B,C) = \sum m(4,5,7)$							
	Illustrate the PAL for the following Boolean functions.							
9.	(i) $F(A,B,C,D) = \Sigma m(2,3,8,9,10,12,13)$					[L3][CO5]	[12M]	
	(ii) $G(A,B,C,D) = \Sigma m(1,3,4,6,9,12,14)$							
	Illustrate the PAL for the following Boolean functions.							
10.	(i) $A(w,x,y,z) = \sum_{x \in \mathbb{Z}} m(0,2,6,7,8,9,12,13)$					[L3][CO5]	[12M]	
	(ii) $B(w,x,y,z)$) = $\Sigma m(0,2,6,7,8,9,12,13,14)$							